
Click to edit Master title style

ComputingSchool Of
March 20th, 2019

Luca Arnaboldi & Hannes Tschofenig

Email: l.arnaboldi@ncl.ac.uk

Newcastle University, Arm Ltd

Using Formal Tools To Design Secure Protocols

OSW 2019

School of Computing

2 of 45

Tutorial Materials Available here:

http://homepages.cs.ncl.ac.uk
/l.arnaboldi/OSW2019Tutorial
/tutorial.html

Before We begin

School of Computing

3 of 45

EternalBlue (WannaCry) – SMB Protocol
• Thousands of NSH PC’s
• And more

KRACK Attacks
• Breaking WPA2
• Potentially millions vulnerable

5G (CCS2018)
• Issues in authentication phase (not being fixed)

Protocols Are Constantly Broken

School of Computing

4 of 45

NO!
•Formal Verification is much more than
breaking a protocol
•Can be a useful design tool

•Has been successfully used in other scenarios
(e.g. TLS1.3)

Are we just finding attacks?

School of Computing

5 of 45

How do we know if a protocol is
secure?

• Smart people stare at it?

More structured approach
• Threat model & intended properties

• Stare at protocol to find attack
• Write proof of attack?
• Alter the protocol and stare again

Can formal methods help make this
simpler?

• Model checking and verification of the
protocol

Protocol Security

Problem Solution

Idea: Encode protocol as a math formula
• e.g. to send a message from A to B this

condition must hold
• Define the participants
• Have a standardized attacker model

• Encode the properties as conditions
that must hold

• Automatically check all system traces
and ANYTHING* that can go wrong
• (limiting the staring to a minimum)

*Almost anything (see later)

School of Computing

6 of 45

•So far we have established that formal methods
are a pretty neat idea (I hope)

•But why use tools instead of pen and paper?

Is the proof in the next slide correct?

Why use automated formal
methods?

Proposition 2.1 Suppose there is a probabilistic algorithm AL with time bound VLI which takes for

input a public key v and withstands, with probability E > 2-'+' * the identification test for a straight

exam. Then the discrete logarithm of v can be computed in time O(IALI/&) and constant, positive

probability.

Proof. This is similar to Theorem 5 in Feige, Fiat, Shamir (1987). The following algorithm AL'

computes log,v. 1. Repeat the following steps at most 1/& times: generate x the same way as does

algorithm AL, pick a random e' in (0, ..., 2 -1) and check whether AL passes the identification test for

(x,e'); if AL succeeds then fix x and go to 2. 2. Probe 1/~ random numbers en in (0,...,2t-1) . If

algorithm AL passes the identification test for some en that is distinct from e' then go to 3 and otherwise

stop. 3. Choose the numbers y', y" which AL submits to the identification test in response to e', e". (y'-y"

is the discrete logarithm of v"-~' (mod P).) 4. Output (y'-y")/(e"-e') (mod q) . t

242 We bound from below the success probability of this algorithm. The algorithm finds in step 1 a

passing pair (x,e') with probability at least i. With probability at least a, the x chosen in step 1, has the

property that AL withstands the identification test for at least a '$ s-fraction of all e E (0, ..., 2 -1). For

such an x step 2 finds a passing number en that is distinct from e' with probability at least 1 - (l-s/2)'/" >

1 - 2.7-'/* > 0.3 . This shows that the success probability of the algorithm is at least 0.3/4.

Schnorr, Claus-Peter. "Efficient signature generation by smart cards." Journal of cryptology 4.3 (1991): 161-174.

Alternatively…..

✔ OR

Correct

Easy to read attack trace

School of Computing

10 of 45

• They give a guarantee and assurance

•Unlike testing it covers every single scenario

•Visualises attacks

• Interact with the protocol

•Allows rapid prototyping

Automated Formal Tools

`

✔

Specification`
Proofs

School of Computing

11 of 45

Types of Protocol Models

Formal Protocol Verification

Symbolic model
(Needham and Schroeder & Dolev and Yao)

Computational Model
(Goldwasser, Micali, Rivest, Yao et al)

Messages Literals BitStrings

Adversary Rules (e.g. Dolev-Yao) All Probabilistic Polynomial Timed Adversary

Crypto Primitives Blackbox Complete Math Theory

Reasoning Concurrent Process Security Theorems (Probability + Complexity)

12

School of Computing Different Modelling Options

Symbolic model Computational Model
Pros

• Quick prototyping

• Immediate feedback

• Intuitive

• Replaces a wordy
specification

• Finds attacks

• Low cost

• Low Effort

• High Reward

Cons
• Slow

• Unintuitive

• Does not replace a
specification

• Steep learning
curve

• Not very human
readable

• Doesn’t find
attacks**

Pros
• A protocol proven

secure in the
computational model
is unattackable

• Can translate easily
into code

• Very rigorous

• Can verify algorithms,
types and almost any
mathematical
structure

Cons
• Restricted

expressiveness

• Hard to extend
attacker capabilities

• Only looks at
specification details

• Cannot look at
implementation
issues

School of Computing

13 of 45

Formal Protocol Verification

Symbolic model Computational Model
Tamarin

• Specified as multiset
rewriting systems

• Built on Maude tool

• Generates protocol
as set of traces
(attacks and benign)

• Temporal logic for
proofs

• Interactive

CryptHOL
• Written as HOL (not

algorithmically)

• Well established
platform

• Small trusted code
base

• Uses SMT’s

• Game based proofs

EasyCrypt
• Proofs by sequences

of games

• Improved automation

• Uses SMT solvers

• Probabilistic Hoare
logic pHL for
verification

• Interactive (guided
proofs)

ProVerif
• Subset of Pi-calculus

• It uses over
approximation
techniques

• If a property cannot
be proven, it
reconstructs an
attack’s trace

• Fully automated

School of Computing

14 of 45

Formal Protocol Verification

Symbolic model Computational Model
Tamarin

• Specified as multiset
rewriting systems

• Built on Maude tool

• Generates protocol
as set of traces
(attacks and benign)

• Temporal logic for
proofs

• Interactive

CryptHOL
• Written as HOL (not

algorithmically)

• Well established
platform

• Small trusted code
base

• Uses SMT’s

• Game based proofs

EasyCrypt
• Proofs by sequences

of games

• Improved automation

• Uses SMT solvers

• Probabilistic Hoare
logic pHL for
verification

• Interactive (guided
proofs)

ProVerif
• Subset of Pi-calculus

• It uses over
approximation
techniques

• If a property cannot
be proven, it
reconstructs an
attack’s trace

• Fully automated

School of Computing

15 of 45

• Very intuitive to use and to get started
• Security analysis from get go (before full protocol)

• Visual and easy to understand feedback loop

• Modular design

• Open source and active community

• Used in real world! (TLS 1.3, 5G key exchange)

• Quicker to design than computational models

• Finds errors & Attacks!

Automatic Protocol Verification
Using Tamarin

It’s adorable!

School of Computing

16 of 45

• Multiset Rewriting rules for model and adversary
• Imagine the protocol as a set of rules

• The rules dictate what traces can take place

• Rules generate a transition system

• Security Goals using first order logic
• Special rules that dictate what a good trace is

• Automatically checks all traces
• Proves all traces are good

• Or, shows counterexample as to why they are bad

Tamarin Overview

Good
Traces

Bad
Traces

Empty means it’s secure, otherwise contains attack

School of Computing

17 of 45

• Protocol Contents
• Terms (variables through the system)

• Term ~x denotes a fresh(like a nonce)
• Term $x denotes a publicly available value (like id of participant)
• Term m denotes untyped messages

• Facts (Conditions that alter the state)
• Special Facts In(t), Out(t), Fr(t), K(t)
• Attacker Facts: KU(t), Isend (t), Coerce(t) and common to add Reveal (t)

• Actions (Keeps track of state but leaves it unmodified)

• State of the system is the combination of facts

• Rules dictate what facts will be in the state

Tamarin Syntax - Basics

School of Computing

18 of 45

• Rules decide how the state can change: L – [A] -> R
• L : Facts that get consumed
• A : Keep track of terms
• R : Save new facts to state

• A rule which is live can be executed at any point
• Even by an adversary!

• We dictate a correct execution by a set of lemmas

• Proofs are done making use of Actions
• Dummy Proof :
Lemma dummy:

All x #i. A1(x) @ #i ==> Ex y #j. A2(y) @ #j

Tamarin Syntax – Rules & Lemmas

School of Computing

19 of 45

• Functions
• Inbuilt: asymmetric encryption, symmetric encryption, hashing,

signing, XOR, Diffie-Hellman
• Defining our own functions e.g:

• Asymmetric Encryption : adec(aenc(m,pk(secretKey),secretKey) = m

• Restrictions (axioms)
• Set out logic that is true for the protocol

• Single Proof of Possession Key :
restriction single_PoP_Key:

"All #i #j. PoPSetup() @ #i & PoPSetup() @ #j ==> #i = #j"

Extra Toppings

School of Computing

20 of 45

Threat Model – Dolev-Yao

Channel IS the intruder.

Can read, modify, fabricate and

replay all messages

Cannot encrypt/decrypt without

the key

Dolev-Yao

School of Computing

21 of 45

Security Properties

Properties for Authentication protocols

• Aliveness

• Weak Agreement

• Non-injective Agreement

• Injective agreement

Lowe, Gavin. "A hierarchy of authentication specifications." Computer security foundations
workshop, 1997. Proceedings., 10th. IEEE, 1997

School of Computing

22 of 45

Security Properties

Properties for Authentication protocols

• Aliveness

• Weak Agreement

• Non-injective Agreement

• Injective agreement

Additionally (quite obviously):

• Secrecy

Lowe, Gavin. "A hierarchy of authentication specifications." Computer security foundations
workshop, 1997. Proceedings., 10th. IEEE, 1997

School of Computing

23 of 45

Injective Agreement
“A protocol guarantees to an initiator A injective-agreement with a
responder B on a message m if, whenever A completes a run of the
protocol , apparently with responder B, then B has previously been

running the protocol, apparently with A, and B was acting as a
responder in his run, and the two agents agreed on the full content of
the message m, and each run of A corresponds to a unique run of B”

School of Computing

24 of 45

Injective Agreement
“A protocol guarantees to an initiator A injective-agreement with a
responder B on a message m if, whenever A completes a run of the
protocol , apparently with responder B, then B has previously been

running the protocol, apparently with A, and B was acting as a
responder in his run, and the two agents agreed on the full content of
the message m, and each run of A corresponds to a unique run of B”

To simplify, this often means that:

The communication between A and B is authenticated, secure
and replay protected

School of Computing

25 of 45

Injective Agreement
“A protocol guarantees to an initiator A injective-agreement with a
responder B on a message m if, whenever A completes a run of the
protocol , apparently with responder B, then B has previously been

running the protocol, apparently with A, and B was acting as a
responder in his run, and the two agents agreed on the full content of
the message m, and each run of A corresponds to a unique run of B”

To simplify, this often means that:

The communication between A and B is authenticated, secure
and replay protected

Strongest level of assurance (covers aliveness and other agreements)

School of Computing

26 of 45

• Describe good behaviour in the system
• Attack is anything that breaks this behaviour

lemma secrecy:

“All x #i.

Secret (x) @ #i ==>

not (Ex #j. K(x)@#j) |

((Ex B #r. KeyReveal(B) @#r)

“

• If there is a claim that x is secret, either the
attacker doesn’t know x or the encryption key is
leaked

Lemmas and Proofs

Good
Traces

Bad
Traces

Empty means it’s secure, otherwise contains attack

School of Computing

27 of 45

• Describe good behaviour in the system
• Attack is anything that breaks this behaviour

lemma secrecy:

“All x #i.

Secret (x) @ #i ==>

not (Ex #j. K(x)@#j) |

((Ex B #r. KeyReveal(B) @#r)

“

• If there is a claim that x is secret, either the
attacker doesn’t know x or the encryption key is
leaked

Lemmas and Proofs

Good
Traces

Bad
Traces

Empty means it’s secure, otherwise contains attack

Traces that follow this rule

Traces that break rule but are part
of the protocol

School of Computing

Live
Demonstration

School of Computing

29 of 45

Needham Schroder

{nonceA, idA}PKB

{nonceA, nonceB}PKA

{nonceB}PKB

School of Computing

Practical Lab 1

School of Computing

31 of 45

Needham Schroder - Attack

{nonceA, idA}PKE {nonceA, idA}PKB

{nonceA, nonceB}PKA{nonceA, nonceB}PKA

{nonceB}PKE {nonceB}PKB

School of Computing

32 of 45

Needham Schroder - Attack

{nonceA, idA}PKE {nonceA, idA}PKB

{nonceA, nonceB}PKA{nonceA, nonceB}PKA

{nonceB}PKE {nonceB}PKB

Receives PKE instead of PKB

School of Computing

33 of 45

Needham Schroder - Attack

{nonceA, idA}PKE {nonceA, idA}PKB

{nonceA, nonceB}PKA{nonceA, nonceB}PKA

{nonceB}PKE {nonceB}PKB

Receives PKE instead of PKB

Was only discovered 17 years later!

Needham Schroeder Attack – Tamarin
Example – Tamarin Output

Needham Schroeder Attack – Tamarin
Example – Tamarin Output

Needham Schroeder Attack – Tamarin
Example – Tamarin Output

School of Computing

37 of 45

Example – Fixed and Proof

Formal Protocol Verification

Needham Schroeder Lowe Fix

{nonceA, idA}PKB

{nonceA, nonceB , idB}PKA

{nonceB, idB}PKB

School of Computing

Live
Demonstration

School of Computing

39 of 45

•Protocol Verification ignores physical attacks
against the devices:
• Side-channel attacks:

• Power consumption, timing, noise, . . .

• Faults introduced in the system in order to break its
security

What we cannot do (yet!)

Information

School of Computing

40 of 45

ACE-OAuth Flow

The protocol follows the following steps:

0. Discovery Step

1. Client requests access token

2. Token is returned to client

3. Now the token is presented to access
the resource

4. The Resource server may or may not
check with the AS whether it’s correct

5. If the token is correct access is
granted to the device

School of Computing

41 of 45

•Full flow of the protocol modelled in Tamarin
•Analysed the full specification and formalised
the requirements
•Security objectives automatically checked
•Enables to test different design choices
•First effort to verify the full protocol flow
•Proved security of the protocol (flow only)

Introduce Skeleton Model

School of Computing

42 of 45

• IETF drafts are generalised and not easily translated into formal

• Initial phase for formalising the security properties
• Outlined the key pieces of information that needed to be secured
• Outlined objectives for each exchange

• Most verification efforts model and assess security of specific
implementation

• We went the opposite direction:
• More flexible
• Can be easily extended
• More scalable

Design Choices

School of Computing

43 of 45

ACE-OAuth Flow

School of Computing

44 of 45

• Modular design
• Can swap out different configurations

• Different extensions can be tested

• Can interactively view results

• After testing on two different extensions
• New requirements arose

• We had to change the implementation

• With the interactive model we fixed mistakes and assessed risks

Formal Translation

School of Computing

45 of 45

IETF drafts are by design flexible and allow for a wide range of different
implementations (which is great), However:

If security protocol X guarantees properties in scenario A,

DOES NOT MEAN that if used in scenario B same results hold!

Example Bike Shop Security Protocols:

The issue with composability

Protocol A ✔ Protocol B ✔ Protocol A+B

School of Computing

46 of 45

• The IoT has lots of different scenarios

• Allowing for different extensions is therefore desirable

• Extensions can cause serious security flaws

So we need a way to check this:

• Our approach:
• Give a generalised model to start with

• Formalise security goals so that it can be easily verified

• Add your own extensions

• Allow the tools to do the hard work!

Designing an Extension

