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Tutorial Materials Available here:

http://homepages.cs.ncl.ac.uk
/l.arnaboldi/OSW2019Tutorial
/tutorial.html

Before We begin
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EternalBlue (WannaCry) – SMB Protocol
• Thousands of NSH PC’s
• And more

KRACK Attacks
• Breaking WPA2 
• Potentially millions vulnerable

5G (CCS2018) 
• Issues in authentication phase (not being fixed)

Protocols Are Constantly Broken



School of Computing 

4 of 45

NO!
•Formal Verification is much more than 
breaking a protocol
•Can be a useful design tool

•Has been successfully used in other scenarios 
(e.g. TLS1.3)

Are we just finding attacks?



School of Computing 

5 of 45

How do we know if a protocol is 
secure?

• Smart people stare at it?

More structured approach
• Threat model & intended properties

• Stare at protocol to find attack
• Write proof of attack?
• Alter the protocol and stare again

Can formal methods help make this 
simpler?

• Model checking and verification of the 
protocol

Protocol Security 

Problem Solution

Idea: Encode protocol as a math formula
• e.g. to send a message from A to B this 

condition must hold
• Define the participants
• Have a standardized attacker model

• Encode the properties as conditions 
that must hold

• Automatically check all system traces 
and ANYTHING* that can go wrong 
• (limiting the staring to a minimum)

*Almost anything (see later)
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•So far we have established that formal methods 
are a pretty neat idea (I hope)

•But why use tools instead of pen and paper?

Is the proof in the next slide correct?

Why use automated formal 
methods?



Proposition 2.1 Suppose there is a probabilistic algorithm AL with time bound VLI which takes for 

input a public key v and withstands, with probability E > 2-'+' * the identification test for a straight 

exam. Then the discrete logarithm of v can be computed in time O(IALI/&) and constant, positive 

probability. 

Proof. This is similar to Theorem 5 in Feige, Fiat, Shamir (1987). The following algorithm AL' 

computes log,v. 1. Repeat the following steps at most 1/& times: generate x the same way as does 

algorithm AL, pick a random e' in (0, ..., 2 -1) and check whether AL passes the identification test for 

(x,e'); if AL succeeds then fix x and go to 2. 2. Probe 1/~ random numbers en in (0,...,2t-1) . If 

algorithm AL passes the identification test for some en that is distinct from e' then go to 3 and otherwise 

stop. 3. Choose the numbers y', y" which AL submits to the identification test in response to e', e". (y'-y" 

is the discrete logarithm of v"-~' (mod P).) 4. Output (y'-y")/(e"-e') (mod q) . t 

242 We bound from below the success probability of this algorithm. The algorithm finds in step 1 a 

passing pair (x,e') with probability at least i. With probability at least a, the x chosen in step 1, has the 

property that AL withstands the identification test for at least a '$ s-fraction of all e E (0, ..., 2 -1). For 

such an x step 2 finds a passing number en that is distinct from e' with probability at least 1 - (l-s/2)'/" > 

1 - 2.7-'/* > 0.3 . This shows that the success probability of the algorithm is at least 0.3/4. 

Schnorr, Claus-Peter. "Efficient signature generation by smart cards." Journal of cryptology 4.3 (1991): 161-174.



Alternatively…..



✔ OR

Correct

Easy to read attack trace
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• They give a guarantee and assurance

•Unlike testing it covers every single scenario

•Visualises attacks

• Interact with the protocol

•Allows rapid prototyping

Automated Formal Tools

`

✔

Specification`
Proofs
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Types of Protocol Models

Formal Protocol Verification

Symbolic model 
(Needham and Schroeder & Dolev and Yao)

Computational Model
(Goldwasser, Micali, Rivest, Yao et al)

Messages Literals BitStrings

Adversary Rules (e.g. Dolev-Yao) All Probabilistic Polynomial Timed Adversary

Crypto Primitives Blackbox Complete Math Theory

Reasoning Concurrent Process Security Theorems (Probability + Complexity)
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School of Computing Different Modelling Options

Symbolic model Computational Model
Pros

• Quick prototyping

• Immediate feedback

• Intuitive

• Replaces a wordy 
specification

• Finds attacks

• Low cost

• Low Effort

• High Reward

Cons
• Slow

• Unintuitive

• Does not replace a 
specification

• Steep learning 
curve

• Not very human 
readable

• Doesn’t find 
attacks**

Pros
• A protocol proven 

secure in the 
computational model 
is unattackable

• Can translate easily 
into code

• Very rigorous

• Can verify algorithms, 
types and almost any 
mathematical 
structure

Cons
• Restricted 

expressiveness

• Hard to extend 
attacker capabilities

• Only looks at 
specification details 

• Cannot look at 
implementation 
issues
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Formal Protocol Verification

Symbolic model Computational Model
Tamarin

• Specified as multiset 
rewriting systems

• Built on Maude tool

• Generates protocol 
as set of traces 
(attacks and benign)

• Temporal logic for 
proofs

• Interactive

CryptHOL
• Written as HOL (not 

algorithmically)

• Well established 
platform

• Small trusted code 
base

• Uses SMT’s

• Game based proofs

EasyCrypt
• Proofs by sequences 

of games

• Improved automation

• Uses SMT solvers

• Probabilistic Hoare 
logic pHL for 
verification

• Interactive (guided 
proofs)

ProVerif
• Subset of Pi-calculus

• It uses over 
approximation 
techniques

• If a property cannot 
be proven, it 
reconstructs an 
attack’s trace

• Fully automated
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• Very intuitive to use and to get started
• Security analysis from get go (before full protocol)

• Visual and easy to understand feedback loop 

• Modular design

• Open source and active community 

• Used in real world! (TLS 1.3, 5G key exchange)

• Quicker to design than computational models

• Finds errors & Attacks!

Automatic Protocol Verification 
Using Tamarin

It’s adorable!
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• Multiset Rewriting rules for model and adversary
• Imagine the protocol as a set of rules

• The rules dictate what traces can take place

• Rules generate a transition system

• Security Goals using first order logic
• Special rules that dictate what a good trace is

• Automatically checks all traces
• Proves all traces are good

• Or, shows counterexample as to why they are bad 

Tamarin Overview

Good 
Traces

Bad
Traces

Empty means it’s secure, otherwise contains attack
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• Protocol Contents
• Terms (variables through the system)

• Term ~x denotes a fresh(like a nonce) 
• Term $x denotes a publicly available value  (like id of participant)
• Term m denotes untyped messages

• Facts (Conditions that alter the state)
• Special Facts In(t), Out(t), Fr(t), K(t)
• Attacker Facts: KU(t), Isend (t), Coerce(t) and common to add Reveal (t)

• Actions (Keeps track of state but leaves it unmodified)

• State of the system is the combination of facts

• Rules dictate what facts will be in the state

Tamarin Syntax - Basics
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• Rules decide how the state can change: L – [ A ] -> R
• L :  Facts that get consumed
• A : Keep track of terms
• R : Save new facts to state

• A rule which is live can be executed at any point
• Even by an adversary!

• We dictate a correct execution by a set of lemmas

• Proofs are done making use of Actions
• Dummy Proof :
Lemma dummy:

All x  #i.  A1(x) @ #i ==> Ex y #j.  A2(y)  @ #j

Tamarin Syntax – Rules & Lemmas
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• Functions
• Inbuilt: asymmetric encryption, symmetric encryption, hashing, 

signing, XOR, Diffie-Hellman
• Defining our own functions e.g:

• Asymmetric Encryption : adec(aenc(m,pk(secretKey),secretKey) = m

• Restrictions (axioms)
• Set out logic that is true for the protocol 

• Single Proof of Possession Key : 
restriction single_PoP_Key:

"All #i #j. PoPSetup(  ) @ #i & PoPSetup(  )  @ #j ==> #i = #j"

Extra Toppings



School of Computing 

20 of 45

Threat Model – Dolev-Yao

Channel IS the intruder.

Can read, modify, fabricate and 

replay all messages

Cannot encrypt/decrypt without 

the key

Dolev-Yao
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Security Properties

Properties for Authentication protocols

• Aliveness

• Weak Agreement

• Non-injective Agreement

• Injective agreement

Lowe, Gavin. "A hierarchy of authentication specifications." Computer security foundations 
workshop, 1997. Proceedings., 10th. IEEE, 1997
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Security Properties

Properties for Authentication protocols

• Aliveness

• Weak Agreement

• Non-injective Agreement

• Injective agreement

Additionally (quite obviously):

• Secrecy

Lowe, Gavin. "A hierarchy of authentication specifications." Computer security foundations 
workshop, 1997. Proceedings., 10th. IEEE, 1997
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Injective Agreement
“A protocol guarantees to an initiator A injective-agreement with a 
responder B on a message m if, whenever A completes a run of the 
protocol , apparently with responder B, then B has previously been 

running the protocol, apparently with A, and B was acting as a 
responder in his run, and the two agents agreed on the full content of 
the message m, and each run of A corresponds to a unique run of B” 
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Injective Agreement
“A protocol guarantees to an initiator A injective-agreement with a 
responder B on a message m if, whenever A completes a run of the 
protocol , apparently with responder B, then B has previously been 

running the protocol, apparently with A, and B was acting as a 
responder in his run, and the two agents agreed on the full content of 
the message m, and each run of A corresponds to a unique run of B” 

To simplify, this often means that:

The communication between A and B is authenticated, secure
and replay protected
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Injective Agreement
“A protocol guarantees to an initiator A injective-agreement with a 
responder B on a message m if, whenever A completes a run of the 
protocol , apparently with responder B, then B has previously been 

running the protocol, apparently with A, and B was acting as a 
responder in his run, and the two agents agreed on the full content of 
the message m, and each run of A corresponds to a unique run of B” 

To simplify, this often means that:

The communication between A and B is authenticated, secure
and replay protected

Strongest level of assurance (covers aliveness and other agreements)
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• Describe good behaviour in the system
• Attack is anything that breaks this behaviour

lemma secrecy:

“All x #i. 

Secret (x) @ #i ==> 

not (Ex #j. K(x)@#j) | 

((Ex B #r. KeyReveal(B) @#r)

“

• If there is a claim that x is secret, either the 
attacker doesn’t know x or the encryption key is 
leaked

Lemmas and Proofs

Good 
Traces

Bad
Traces

Empty means it’s secure, otherwise contains attack
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• Describe good behaviour in the system
• Attack is anything that breaks this behaviour

lemma secrecy:

“All x #i. 

Secret (x) @ #i ==> 

not (Ex #j. K(x)@#j) | 

((Ex B #r. KeyReveal(B) @#r)

“

• If there is a claim that x is secret, either the 
attacker doesn’t know x or the encryption key is 
leaked

Lemmas and Proofs

Good 
Traces

Bad
Traces

Empty means it’s secure, otherwise contains attack

Traces that follow this rule

Traces that break rule but are part 
of the protocol
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Needham Schroder

{nonceA, idA}PKB

{nonceA, nonceB}PKA

{nonceB}PKB



School of Computing 

Practical Lab 1
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Needham Schroder - Attack

{nonceA, idA}PKE {nonceA, idA}PKB

{nonceA, nonceB}PKA{nonceA, nonceB}PKA

{nonceB}PKE {nonceB}PKB
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Needham Schroder - Attack

{nonceA, idA}PKE {nonceA, idA}PKB

{nonceA, nonceB}PKA{nonceA, nonceB}PKA

{nonceB}PKE {nonceB}PKB

Receives PKE instead of PKB
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Needham Schroder - Attack

{nonceA, idA}PKE {nonceA, idA}PKB

{nonceA, nonceB}PKA{nonceA, nonceB}PKA

{nonceB}PKE {nonceB}PKB

Receives PKE instead of PKB

Was only discovered 17 years later!



Needham Schroeder Attack – Tamarin
Example – Tamarin Output



Needham Schroeder Attack – Tamarin
Example – Tamarin Output



Needham Schroeder Attack – Tamarin
Example – Tamarin Output
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Example – Fixed and Proof

Formal Protocol Verification

Needham Schroeder Lowe Fix

{nonceA, idA}PKB

{nonceA, nonceB , idB}PKA

{nonceB, idB}PKB
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•Protocol Verification ignores physical attacks 
against the devices: 
• Side-channel attacks:

• Power consumption, timing, noise, . . . 

• Faults introduced in the system in order to break its 
security

What we cannot do (yet!)

Information
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ACE-OAuth Flow

The protocol follows the following steps:

0.   Discovery Step

1. Client requests access token

2. Token is returned to client

3. Now the token is presented to access 
the resource

4. The Resource server may or may not 
check with the AS whether it’s correct

5. If the token is correct access is 
granted to the device
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•Full flow of the protocol modelled in Tamarin
•Analysed the full specification and formalised 
the requirements
•Security objectives automatically checked
•Enables to test different design choices
•First effort to verify the full protocol flow
•Proved security of the protocol (flow only)

Introduce Skeleton Model
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• IETF drafts are generalised and not easily translated into formal

• Initial phase for formalising the security properties
• Outlined the key pieces of information that needed to be secured
• Outlined objectives for each exchange

• Most verification efforts model and assess security of specific 
implementation

• We went the opposite direction:
• More flexible
• Can be easily extended
• More scalable

Design Choices
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ACE-OAuth Flow
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• Modular design 
• Can swap out different configurations

• Different extensions can be tested

• Can interactively view results

• After testing on two different extensions
• New requirements arose 

• We had to change the implementation

• With the interactive model we fixed mistakes and assessed risks

Formal Translation
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IETF drafts are by design flexible and allow for a wide range of different 
implementations (which is great), However:

If security protocol X guarantees properties in scenario A,

DOES NOT MEAN that if used in scenario B same results hold!

Example Bike Shop Security Protocols:

The issue with composability

Protocol A ✔ Protocol B ✔ Protocol A+B
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• The IoT has lots of different scenarios

• Allowing for different extensions is therefore desirable

• Extensions can cause serious security flaws

So we need a way to check this:

• Our approach:
• Give a generalised model to start with

• Formalise security goals so that it can be easily verified

• Add your own extensions

• Allow the tools to do the hard work!

Designing an Extension


