University of Stuttgart

----- * Institute of
Information Security

Formal Security Analysis
of the OpenlD
Financial-grade API

Daniel Fett, Pedram Hosseyni, Ralf Kiisters

To appear at IEEE Security and Privacy 2019

2019-03-20

> OpenlD Financial-grade API
~ Profile of OAuth 2.0 Authorization Framework
> “Financial-grade™:
— "highly secured OAuth profile”
— “to be used in write access to financial data [..] and other similar higher risk access”
— "higher risk use cases”

™ Such situations are extremely interesting for attackers ...

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

Some Recent Attacks ...

Forbes Billionaires Innovation Leadership Money Consumer Industry Lifestyle
7, FINANCIAL TIMES myFY
Laughing All The Way To The i CRphme L ¥ s ST
Date . . . : s Carphone reveals attempt to hack almost 6m
Kred Bank..Cybchrlmlrl.als :I‘argetmg - cords
U.S. Financial Institutions | _
retailer fall A% after attack on payments processing systems
Business

North Korea Hackers Tried to Take $1-1 Meni ~
Billion in Bank Attacks

By Yalman Onaran -
October 8, 2018, 2:00 PM GMT+2 Updated on October 9, 2018, 1:.35 AM GMT+2 an kra u ber € rbEUten 1
Milliarde US-Dollar

Mexico central bank says

. spye Gemeinsam haben Interpol, Europol, Kaspersky Lab und andere Institutionen
hackers siphoned $15 million _ : d Po%, Paspersiy =4 |
. . den bisher grof3ten Cyber-Raubzug aufgedeckt. Seit dem Jahr 2013 habe die
from flve com panles "Carbanak"-Gang Angriffe auf Banken in liber 20 Landern gestartet.

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

Objectives of our Work

> Create a Model of the Financial-grade API
— Including: PKCE, mTLS, OAUTRB, ...

> Capturing Security Goals and Assumptions

™ Proof of Security Properties

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

Outline

* Model-based Approach
* Financial-grade API

— Key Mechanisms

— Attacker Model

* Security Properties

* Attacks Found through the Analysis

Outline

* Model-based Approach

* Financial-grade API

— Key Mechanisms

— Attacker Model

* Security Properties

* Attacks Found through the Analysis

WIM Previously Analyzed Protocols

- SPRESSO

Mozilla BrowserlD

[S&P2014]

[ESORICS2015] [cCs2018]

u
/o"' 28

OAuth 2.0

> Found several new

attacks

> Developed fixes and
implementation

guidelines

> Proof of security

[CCS2016]

OpenlD Connect

> Including extensions

> Developed best
practices against

known attacks

> Proof of security

[CSF2017]

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

Our Model-Based Approach

Formal Proofs = Attacks
of Properties \|/
Fixes

security
Security Properties 4
application-specific

model

Foundation:

generic web

Formal description of
the web

infrastructure model

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

U Rinse and repeat

until proof goes through.

Application model
built from
source code or

specification

Advantages

This approach can yield...
* new attacks and respective fixes

* strong security guarantees
excluding even unknown types of

attacks
security

properties

application-specific

model

WIM

web infrastructure model

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

Outline

* Model-based Approach

* Financial-grade API

— Key Mechanisms

— Attacker Model

* Security Properties

* Attacks Found through the Analysis

OpenlD Financial-grade APl (FAPI)

> Profile of the OAuth 2.0 Authorization Framework

> Utilizes mechanisms of OpenlD Connect

> Different Profiles
~— Read-Only Profile
* Authorization Code Flow
~— Read-Write Profile
* OIDC Hybrid Flow
* Authorization Code Flow with JARM

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

OAuth 2.0 Authorization Code Mode

Browser Client $
Server
< 1. Authorization Request l
< 2. Redirect Authorization Request 4+ Authenticate >
< 3. Authorization Response with Authorization Code C

4. Redirect Authorization Respons>
5.send C >
< 6. send Access Token AT

Resource Server

< 7. retrieve data using AT > \':

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

Attacker Model (Read-Only Profile)

Client

Authorization $

1. Authorization Request

< 2. Redirect Authorization Request + Authenticate >

< 3. Authorization Response with Authorization Code C

5.send C >
< 6. send Access Token AT

Resource Server

< 7. retrieve data using AT > . \':
Leakage

4. Redirect Authorization Resp

App Client |

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

Attacker Model (Read-Write Profile)

Client

Authorization $

Server

1. Authorization Request

< 2. Redirect Authorization Request + Authenticate >

< 3. Authorization Response with Authorization Code C

E send C g misconfigurefi
Token Endpoint
6. send Access Token Al

Resource Server

4. Redirect Authorization Resp

App Client |

=

H L

7. retrieve data using AT

Leakage

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

FAPI: Key Mechanisms

New Defense Mechanisms

[’ Token Binding]

> Proof Key for Code Exchange (PKCE)
> Signed Authorization Response (JARM)
> Improved Client Authentication

> Signed Authorization Request

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

Token Binding

> Two Methods:
~ OAuth 2.0 Token Binding
— Mutual TLS

> Goal: Bind Authorization Code and Access Token to Client

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

Binding Access Tokens: ldea

Browser Client $ a
Server 1)
< 1. Authorization Request l
< 2. Redirect Authorization Request 4+ Authenticate >
< 3. Authorization Response with Authorization Code C

4. Redirect Authorization Respons>

< 6. send Access Token AT

Resource Server
< 7. retrieve data using AT > g |

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

FAPI: Attacker Model

Attacker Model

As of 23-10-2018,
> Read-Only Profile: (including JARM)

— Authorization Response leaks
— Authorization Request leaks
> Read-Write Profile

— Token Endpoint controlled
by Attacker

— Access Tokens leaks

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

Attacker Model: More Details

> Read-Only Profile:

Authorization Response leaks \

Part 1: Read-Only API Security Profile
5.2.2 Authorization server:

7. shall requirelRFC7636 I/vith 5256

as the code challenge method;

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

Attacker Model: More Details

> Read-Only Profile:

End Device (e.g., Smartphone) |
— Authorization Response leaks

(6) Access Token +-—————————- +
| Legitimate icious |K——————————————————— |
— |OAuth 2.0 App| | App |Ip———"——"m———""——————- > |
(5) Authorization |
Grant |
>
Authz

I
I
I
I
| Server
I
I
I
I
I

(3) Authz Code
Operating System/ | <-———————————————— |
Browser | ——————————————————— > |

| | (2) Authz Request |

Figure: https://tools.ietf.org/html/rfc7636

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

Attacker Model: More Details

> Read-Only Profile:

/

— Authorization Request leaks

Part 1: Read-Only API Security Profile
5.2.2 Authorization server:

7. shall require RFC7636 with S256

- as the code challenge method;

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

Attacker Model: More Details

> Read-Only Profile:

/

Authorization Request leaks

4b. A more sophisticated attack scenario

allows the attacker to observe requests

(in addition to responses) to the authorization
endpoint. [...]

This was caused by leaking http log information in

the 0S. To mitigate this, "code_challenge_method"
value must be set either to "S256" or a value
defined by a cryptographically secure

"code_challenge_method" extension.

2019-03-20

Daniel Fett, Pedram Hosseyni, Ralf Kiisters

Attacker Model: More Details

>
8.3.2 Client credential and authorization code phishing at token
B endpoint
. . In this attack, the client developer is social engineered into believing that
> Read-Write Profile | e VEIOPET 15 SbEdl engineered | vine
the token endpoint has changed to the URL that is controlled by the
— Token Endpoint controlled attacker.
by Attacker As the result, the client sends the code and the client secret to the

attacker, which will be replayed subsequently.

When the FAPI client uses MTLS or OAUTB, the authorization code is
bound to the TLS channel, any phished client credentials and authorization

codes submitted to the token endpoint cannot be used since the

authorization code is bound to a particular TLS channel.

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

https://tools.ietf.org/html/draft-ietf-oauth-mtls
https://tools.ietf.org/html/draft-ietf-oauth-token-binding

Attacker Model: More Details

> Read-Write Profile
8.3.5 Access token phishing

When the FAPI client uses MTLS or OAUTB, the access token is bound to
the TLS channel, it is access token phishing resistant as the phished access

tokens cannot be used.
— Access Tokens leaks

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

https://tools.ietf.org/html/draft-ietf-oauth-mtls
https://tools.ietf.org/html/draft-ietf-oauth-token-binding

Security Definitions

FAPI: Security Definitions

. . security
|
Authentication

Attacker cannot log in at client with honest identity

»™ Authorization

Attacker cannot access resources of honest identity

> Session Integrity

Honest user is logged in under their own account and using their own resources

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

Authorization-Property

Definition 17 (Authorization Property). We say that the FAPI web system with a network attacker FAPI" is secure
w.r.t. authorization iff for every run p of FAPI", every configuration (S,E,N) in p, every authorization server as € AS
that is honest in § with s{’.resource_servers being domains of honest resource servers, every identity id € ID“ with
b = ownerOfID(id) being an honest browser in S, every client ¢ € C that is honest in § with client id clientld issued
to ¢ by as, every resource server rs € RS that is honest in S such that id € si.ids, s.authServ € dom(as) and with
dom,s € si’.resource_servers (with dom,, € dom(rs)), every access token ¢ associated with ¢, as and id and every resource
access nonce r € s;.rNonce|id| Usj .wNoncelid| it holds true that:

If r is contained in a response to a request m sent to rs with t = m.header|Authorization|, then r is not derivable from
the attackers knowledge in S (i.e., r & dp(S(attacker))).

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

FAPI: Security Definitions

> Authentication

Attacker cannot log in at client with honest identity

»™ Authorization

Attacker cannot access resources of honest identity

> Session Integrity

Honest user is logged in under their own account and using their own resources

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

Attacks

Attacks Found Through Our Formal Analysis é

r N
> Cuckoo’s Token Attack

.~ Access Token Injection

> PKCE Chosen Challenge Attack

> Authorization Request Leak Attacks

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

Attacks Found Through Our Formal Analysis é

> Cuckoo’s Token Attack

>

>

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

Recap: Binding Access Tokens

Browser Client $ a
Server 1)
< 1. Authorization Request l
< 2. Redirect Authorization Request 4+ Authenticate >
< 3. Authorization Response with Authorization Code C

4. Redirect Authorization Respons>

:
&
Resource Server
< 7. retrieve data using AT > !

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

Cuckoo’s Token Attack

_ Authorization
Browser Client

Server
% < 1. Authorization Request

2. Redirect Authorization Request + Authenticate

< 3. Authorization Response with Authorization Code C

4. Redirect Authorization Respons>
5.send C >

< 6. send Access Token AT%
(Q@g@\&

O
O
Resource Server o
|
AT% is bound to Client |
Read-Write b # < 7. retrieve data using AT%ﬂ> \ﬂ}'. |
Profile /@g\ X a

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

Mitigation

_ Authorization
Browser Client

Server
% < 1. Authorization Request

2. Redirect Authorization Request + Authenticate

< 3. Authorization Response with Authorization Code C

4. Redirect Authorization Respons>
5.send C

< 6. send Access Token AT%

Resource Serye

Read-Write
Profile

£
Include expected
issuer of AT <

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

Wrong AS
— Stop

‘
7. retrieve data using AT%> ‘ ‘
é‘”@g s

Attacks Found Through Our Formal Analysis é

>

> Access Token Injection

>

>

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

Recap: Attacker Model

> Read-Only Profile:
— Authorization Response leaks

— Authorization Request leaks

> Read-Write Profile

— Token Endpoint controlled
by Attacker

— Access Tokens leaks

_ J

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

Access Token Injection

Browser Client

Server - $.
% < 1. Authorization Request l ‘

2. Redirect Authorization Request + Authenticate

< 3. Authorization Response with Authorization Code C

4. Redirect Authorization Respons>
5.send C

< 6. send Access Token AT%
(Q@g@\&

O
O
Resource Server o
|
AT% is bound to Client |
Read-Write b # < 7. retrieve data using AT%ﬂ> \ﬂ}'. |
Profile /@g\ X a

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

Mitigation

_ Authorization
Browser Client $

Server - .
% < 1. Authorization Request l ‘

2. Redirect Authorization Request + Authenticate
Add at__hash to

JARM-Response
3. Authorization Response with Authorization Code C

4. Redirect Authorization Respons>
5.send C >

Or: add at__hash to I><

second ID Token

6. send Access Token AT%

o

Resource Server
Wrong hash

— Stop

Read-Write
Profile

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

Attacks Found Through Our Formal Analysis é

r N
> Cuckoo’s Token Attack

.~ Access Token Injection

>

>

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

Fixes and Security Proof

> Fixes proposed for all attacks

> Proved security

— Authentication \/

* Attacker cannot log in at client with honest identity

— Authorization \/

* Attacker cannot access resources of honest identity

— Session Integrity \/

* Honest user is logged in under their own account and using their own resources

~

Only for Webserver
Clients using OAUTB

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

Conclusion

> First formal security analysis of the OpenlD Financial-grade API
> Found several attack scenarios
> Suggested fixes

Thanks!

> Proved security under strong attacker model

2019-03-20 Daniel Fett, Pedram Hosseyni, Ralf Kiisters

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

