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Focus of this talk

• Using OAuth to authorize 
service to service calls in 
Kubernetes
• Bootstrapping a secure

system
• Not covering:
• User authorization
• Ingress
• Lots of other details!
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Authorizing service to service calls

• Many customers want to use OAuth 2 for this
• Each service is an OAuth 2 client + resource server
• Option 1:
• Use client credentials grant
• Scopes act like permissions
• AS applies per-client policy to decide which scopes to grant

• Option 2:
• Service accounts – account has permissions/roles
• Use ROPC / JWT Bearer grant to authorize clients
• Limited scope restrictions
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How do pods get credentials?
The “Secret Zero” problem
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https://github.com/Boostport/kubernetes-vault

Kubernetes-Vault controller

https://github.com/Boostport/kubernetes-vault


K8s-OAuth controller flow
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OAuth mTLS

• draft-ietf-oauth-mtls – (current: draft 13)
• TLS client certificate authentication
• CA-signed
• Self-signed

• Certificate-bound access tokens (PoP)
• Access token is bound to client’s X.509 cert
• Resource server checks cert matches thumbprint associated 

with token
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4. Public Clients and Certificate Bound Tokens

Mutual TLS OAuth client authentication and 
certificate-bound access tokens can be used 
independently of each other. Use of 
certificate- bound access tokens without 
mutual TLS OAuth client authentication, for 
example, is possible in support of binding 
access tokens to a TLS client certificate for 
public clients (those without authentication 
credentials associated with the "client_id"). 

https://tools.ietf.org/html/draft-ietf-oauth-mtls-13
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Self-signed mTLS auth code power flow

• Pod receives auth code on startup from init container as 
before
• Application generates self-signed X.509 cert + keypair on 

startup
• Authenticates connection to Authorization Server during 

code exchange
• AS ignores cert for authentication (public client)...
• ...but binds access token to the cert



What have we gained?
• Only secret on disk in the clear is a one-time use auth code
• If already used then attacker gains nothing
• If attacker wins race then app fails to start and grant is revoked

• Strong mutual TLS-bound access tokens...
• ...without having to run an additional PKI
• Revocation: OAuth token revocation (no CRLs, OCSP)
• Rotation: OAuth refresh token, bind new cert as part of 

refresh
• Just need normal server certs (e.g., Let’s Encrypt)
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What’s a service mesh?
• All communication goes 

through local proxies
• Deployed as “sidecar” within 

each pod
• Proxies handle service 

discovery and routing, load 
balancing, circuit breaking, 
metrics, tracing, etc.
• All traffic routed to/from 

proxy over loopback
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Service mesh managed mTLS
• Mesh can transparently add 

mTLS certificate 
authentication
• Used for “micro-

segmentation” network 
security
• Can pass-through cert to 

AS/RS in trusted header
• Access token is bound to 

cert
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THANK YOU!
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