
OAuth 2 in 
Kubernetes
Neil Madden
OAuth Security Workshop, Stuttgart 2019



Kubernetes

Nodes

Pod Pod Pod Pod Pod Pod

Service A Service B

Pods (Containers)



Focus of this talk

• Using OAuth to authorize 
service to service calls in 
Kubernetes
• Bootstrapping a secure

system
• Not covering:
• User authorization
• Ingress
• Lots of other details!

Copyright © 2018 ForgeRock. All rights reserved

Kubernetes
This talk



Service to service (normal)

Nodes

Pod Pod Pod Pod Pod Pod

Service A Service B

Pods (Containers)



Authorizing service to service calls

• Many customers want to use OAuth 2 for this
• Each service is an OAuth 2 client + resource server
• Option 1:
• Use client credentials grant
• Scopes act like permissions
• AS applies per-client policy to decide which scopes to grant

• Option 2:
• Service accounts – account has permissions/roles
• Use ROPC / JWT Bearer grant to authorize clients
• Limited scope restrictions

Copyright © 2018 ForgeRock. All rights reserved



How do pods get credentials?
The “Secret Zero” problem

Copyright © 2018 ForgeRock. All rights reserved



https://github.com/Boostport/kubernetes-vault

Kubernetes-Vault controller

https://github.com/Boostport/kubernetes-vault


K8s-OAuth controller flow

Copyright © 2018 ForgeRock. All rights reserved

K8s-OAuth ControllerK8s API 
Server

Watches for new
pods

Authorization Server

Begin auth code flowAuthorize Auth code

Service

Pod

Init

Auth code

New pod!

Exchange code for
access token

Service acct creds

Service is a
public client

code write



OAuth mTLS

• draft-ietf-oauth-mtls – (current: draft 13)
• TLS client certificate authentication
• CA-signed
• Self-signed

• Certificate-bound access tokens (PoP)
• Access token is bound to client’s X.509 cert
• Resource server checks cert matches thumbprint associated 

with token

Copyright © 2018 ForgeRock. All rights reserved



Copyright © 2018 ForgeRock. All rights reserved

4. Public Clients and Certificate Bound Tokens

Mutual TLS OAuth client authentication and 
certificate-bound access tokens can be used 
independently of each other. Use of 
certificate- bound access tokens without 
mutual TLS OAuth client authentication, for 
example, is possible in support of binding 
access tokens to a TLS client certificate for 
public clients (those without authentication 
credentials associated with the "client_id"). 

https://tools.ietf.org/html/draft-ietf-oauth-mtls-13


Copyright © 2018 ForgeRock. All rights reserved



Self-signed mTLS auth code power flow

• Pod receives auth code on startup from init container as 
before
• Application generates self-signed X.509 cert + keypair on 

startup
• Authenticates connection to Authorization Server during 

code exchange
• AS ignores cert for authentication (public client)...
• ...but binds access token to the cert



What have we gained?
• Only secret on disk in the clear is a one-time use auth code
• If already used then attacker gains nothing
• If attacker wins race then app fails to start and grant is revoked

• Strong mutual TLS-bound access tokens...
• ...without having to run an additional PKI
• Revocation: OAuth token revocation (no CRLs, OCSP)
• Rotation: OAuth refresh token, bind new cert as part of 

refresh
• Just need normal server certs (e.g., Let’s Encrypt)

Copyright © 2018 ForgeRock. All rights reserved



What’s a service mesh?
• All communication goes 

through local proxies
• Deployed as “sidecar” within 

each pod
• Proxies handle service 

discovery and routing, load 
balancing, circuit breaking, 
metrics, tracing, etc.
• All traffic routed to/from 

proxy over loopback
Copyright © 2018 ForgeRock. All rights reserved

Service A
Container

Service B
Container

Proxy Proxy

Pod Pod



Service mesh managed mTLS
• Mesh can transparently add 

mTLS certificate 
authentication
• Used for “micro-

segmentation” network 
security
• Can pass-through cert to 

AS/RS in trusted header
• Access token is bound to 

cert

Service A
Container

Authorization 
Server

Proxy

Pod Pod

Proxy

Auth code

Auth code
with mTLS

Code + cert



THANK YOU!

Copyright © 2018 ForgeRock. All rights reserved


